การสร้าง AI อาจง่ายกว่าที่คิด

ข่าวประชาสัมพันธ์ »

ใช้ AI ร่วมกับการประมวลผลคลาวด์แบบไร้เซิร์ฟเวอร์ คือวิธีสู่ความสำเร็จ

การสร้าง AI อาจง่ายกว่าที่คิด

ดร. หลี่ เฟยเฟย ประธานฝ่ายธุรกิจผลิตภัณฑ์ด้านดาต้าเบส อาลีบาบา คลาวด์

ChatGPT ได้รับความสนใจจากสาธารณชนครั้งแรกเมื่อปลายปีที่ผ่านมา องค์กรเกือบทุกแห่งได้ใช้หรือสร้าง generative AI ในรูปแบบใดรูปแบบหนึ่ง และเมื่อเร็ว ๆ นี้ เราได้เห็นบทสนทนาที่นำไปสู่การแลกเปลี่ยนความเห็นกันว่าจะใช้ AI ให้มีประสิทธิภาพได้อย่างไรกันแน่ โดยเฉพาะเมื่อจะดำเนินการให้เป็นไปตามความคาดหวังต่าง ๆ ที่เกิดจากกระแสความคาดหวังที่เกินจริงที่ต้องแลกมาด้วยค่าใช้จ่ายและความซับซ้อนจำนวนมาก

เรามองย้อนกลับไปเพื่อพิจารณาอีกครั้งว่า AI เริ่มมีความสำคัญได้อย่างไร AI มีแนวโน้มเติบโตอาจเป็นเพราะความฉลาดของมันก็ได้ AI ตรวจพบสิ่งที่เราอาจผิดพลาดหรือละเลยได้เพราะมันมีความสามารถที่จะรองรับสิ่งต่าง ๆ และมีความสม่ำเสมอมากกว่า แต่โดยพื้นฐานแล้ว ข้อมูล คือรากฐานของการทำงานของ AI

ดังนั้นองค์กรต้องมั่นใจว่าข้อมูลได้รับการประมวลผลและปกป้องอย่างเหมาะสม ข้อมูลเป็นเส้นเลือดใหญ่หล่อเลี้ยงไม่เพียงแต่โครงสร้างพื้นฐานไอทีทั้งหมดเท่านั้น แต่ยังเป็นฐานให้กับนวัตกรรมทั้งหมดที่มนุษย์หรือ AI สร้างสรรค์ ฐานข้อมูลในฐานะที่เป็นส่วนหนึ่งของโครงสร้างพื้นฐานหลักที่ขับเคลื่อน generative AI ได้มีการพัฒนาเพื่อตอบความต้องการต่าง ๆ ในยุค generative AI ให้กับองค์กรต่าง ๆ ทั้งนี้ AI ขององค์กรจะมีประสิทธิภาพเพียงใดนั้นขึ้นอยู่กับวิธีการที่องค์กรบริหารจัดการข้อมูลโดยใช้ฐานข้อมูลได้ถูกต้องเพียงใด

โมเดลฐานข้อมูลที่ใช้ทั่วไป

มีฐานข้อมูลประเภทหนึ่งเรียกว่า Online Transaction Processing (OLTP) ซึ่งรองรับการประมวลผลธุรกรรมออนไลน์ ช่วยให้ธุรกิจทำธุรกรรมพร้อม ๆ กันได้ เช่น ทำธุรกรรมธนาคารทางออนไลน์, ช้อปปิ้ง และทำธุรกรรมออนไลน์อื่น ๆ ไปด้วย และ องค์กรจะได้รับคุณประโยชน์จากพื้นที่เก็บข้อมูลส่วนกลาง (data pool) จากการที่ข้อมูลเหล่านี้สะสมอยู่ในฐานข้อมูล

นอกจากนี้ยังมี On-Line Analytical Procession (OLAP) ซึ่งช่วยให้องค์กรวิเคราะห์ข้อมูลที่อยู่ในฐานข้อมูลได้อย่างทรงประสิทธิภาพ รวดเร็ว โต้ตอบได้ ผ่านความสามารถที่นอกจากจะรวบรวมข้อมูลธุรกรรมแล้ว ยังสามารถรวบรวมข้อมูลจากแหล่งต่าง ๆ ได้หลายแห่ง

ตัวอย่าง ผู้ค้าปลีกสามารถรวมข้อมูลด้านสินค้าคงคลังและสิ่งที่มีอยู่ในสต็อก เข้ากับชุดข้อมูลอีกชุดหนึ่งซึ่งเป็นข้อมูลว่าลูกค้ากำลังซื้อหาสินค้าใดอยู่ เพื่อให้ได้ข้อมูลที่ชาญฉลาดว่าต้องเพิ่มการผลิตสินค้าชิ้นใดชิ้นหนึ่งมากกว่าชิ้นอื่นเพราะสินค้านั้นขายดีมากขึ้น

โมเดลฐานข้อมูลอื่นอีกตระกูลหนึ่งที่เรียกว่า NoSQL ได้รับความนิยมเช่นกัน เพราะช่วยจัดเรียงข้อมูลที่ไม่มีโครงสร้าง ซึ่งเป็นความสามารถที่ต่างจากสองโมเดลที่กล่าวมาข้างต้น

โมเดลฐานข้อมูลที่เกิดขึ้นใหม่เพื่อใช้กับ AI

เมื่อ AI เกิดขึ้น ทุกคนคาดว่าโมเดลฐานข้อมูลเวกเตอร์ (vector database) จะมีการเปลี่ยนโฉมมากที่สุด

ฐานข้อมูลเวกเตอร์ ถูกนำมาใช้เพื่อรับมือกับ "เวิร์กโหลดอัจฉริยะ" ด้วยโมเดลภาษาขนาดใหญ่ (LLM) สำหรับการฝังและเก็บ high-dimensional vectors นับล้านเหล่านั้น เพื่อให้สามารถเข้าใจความหมายที่คาดหวังจาก AI ที่ไม่เพียงเข้าใจความหมาย แต่ยังเข้าใจบริบทและความต่างที่ซ่อนอยู่ด้วย เช่น ข้อมูลที่ไม่มีโครงสร้างต่าง ๆ เช่น เอกสาร รูปภาพ การบันทึกเสียง วิดีโอ และอื่น ๆ ซึ่งคาดว่าจะมีสัดส่วนมากกว่า 80 เปอร์เซ็นต์ของข้อมูลทั้งหมดทั่วโลกภายในปี 2593

ในท้ายที่สุด AI ก็เป็นเรื่องเกี่ยวกับการทำความเข้าใจข้อมูล และจะไม่สามารถทำได้โดยไม่ใช้ฐานข้อมูลเวกเตอร์ ดังนั้นจึงเป็นเรื่องสำคัญมากที่ต้องเพิ่มความรู้ด้านโมเดลภาษาขนาดใหญ่ที่เฉพาะกับแต่ละอุตสาหกรรม ซึ่งนับเป็นหนึ่งในข้อจำกัดที่สำคัญที่สุดที่โมเดล generative AI ต้องเผชิญ

อาลีบาบา คลาวด์ เพิ่มประสิทธิภาพให้โซลูชันด้านฐานข้อมูลของบริษัทฯ อย่างเต็มรูปแบบด้วยเวกเตอร์เอนจิ้นที่เป็นกรรมสิทธิ์ของบริษัทฯ โซลูชันด้านฐานข้อมูลของบริษัทฯ เช่น PolarDB (ฐานข้อมูลแบบคลาวด์-เนทีฟ), AnalyticDB (ดาต้าแวร์เฮ้าส์แบบคลาวด์-เนทีฟ) และ Lindorm (ฐานข้อมูลมัลติ-โมเดลแบบคลาวด์-เนทีฟ) ทำให้ในปัจจุบัน องค์กรต่าง ๆ สามารถป้อนข้อมูลความรู้ที่เจาะจงในแต่ละอุตสาหกรรมเข้าไปยังฐานข้อมูลเวกเตอร์ของตนได้ ช่วยให้สร้างและเปิดตัวแอปพลิเคชัน generative AI ได้

ตัวอย่างสถานการณ์จริงทางธุรกิจที่แสดงให้เห็นถึงประสิทธิภาพของฐานข้อมูลเวกเตอร์

ลูกค้ารายหนึ่งของอาลีบาบา คลาวด์ ซึ่งเป็นบริษัทด้านเกมออนไลน์รายใหญ่จากเอเชียตะวันออกเฉียงใต้ ใช้โซลูชันฐานข้อมูลของอาลีบาบา คลาวด์ สร้างตัวละครอัจฉริยะที่ผู้เล่นไม่ได้เป็นผู้ควบคุม (Non-Player Characters: NPCs) ให้สามารถมีส่วนร่วมกับผู้เล่นที่เป็นมนุษย์ได้อย่างแท้จริงมากขึ้น จากการที่ NPCs เหล่านี้ไม่ได้ "อ่าน" สคริปต์เป็นตอน ๆ แต่ตอบสนองสิ่งที่ผู้เล่นที่เป็นมนุษย์สื่อสารตามความเข้าใจแบบเรียลไทม์

คุ้มค่าการลงทุน

สมรรถนะของ AI ไม่ได้จำกัดอยู่ที่อุตสาหกรรมเกมหรือแม้แต่การทำความเข้าใจข้อมูลที่ไม่มีโครงสร้างเท่านั้น

AI สามารถจัดการฐานข้อมูลได้ด้วยตัวเอง เช่น เมื่อพื้นที่จัดเก็บข้อมูลเหลือน้อย AI สามารถแจ้งเตือนไปยังผู้ดูแลระบบให้ระวังเรื่องข้อกำหนดในการจัดเก็บข้อมูล และถามว่าจำเป็นต้องขยายพื้นที่จัดเก็บข้อมูลหรือไม่ AI สามารถปรับขนาดพื้นที่จัดเก็บได้อัตโนมัติหากได้รับอนุญาตไว้ ฟังก์ชันเดียวกันนี้สามารถใช้กับขีดความสามารถของ CPU หน่วยความจำ และฟังก์ชันอื่น ๆ ได้

ความสามารถนี้มีประโยชน์ต่อการใช้การประมวลผลคลาวด์แบบไร้เซิร์ฟเวอร์ ไร้เซิร์ฟเวอร์หมายถึงไม่ต้องกังวลเรื่องเซิร์ฟเวอร์ที่อยู่เบื้องหลังบริการที่องค์กรใช้อีกต่อไป

ในอดีต เมื่อมีการซื้อบริการคลาวด์ จำเป็นต้องระบุจำนวนเซิร์ฟเวอร์ที่ต้องการใช้งาน เช่น เซิร์ฟเวอร์ที่มี 4 คอร์ และหน่วยความจำ 8 กิกะไบต์ จะมีค่าใช้จ่ายที่สูง การจัดสรรเซิร์ฟเวอร์ที่มีประสิทธิภาพเกินความต้องการใช้งานจริง ย่อมส่งผลให้เกิดการสูญเปล่าของทรัพยากรเซิร์ฟเวอร์

การประมวลผลแบบไร้เซิร์ฟเวอร์ได้รับการออกแบบมาเพื่อแก้ความท้าทายนี้และเพื่อให้มั่นใจว่าความจุของเซิร์ฟเวอร์ที่บริการคลาวด์นั้นใช้ตรงกับความต้องการของเวิร์กโหลดอย่างแม่นยำ และปรับให้เข้ากับการเปลี่ยนแปลงอย่างไดนามิกของเวิร์กโหลดได้ อย่างไรก็ตาม เมื่อเวลาผ่านไป หากเวิร์กโหลดเปลี่ยนแปลงแบบไดนามิก วิธีการแบบไร้เซิร์ฟเวอร์อาจทำให้ต้องเสียค่าใช้จ่ายมากขึ้น

สิ่งที่ดีที่สุดสำหรับทั้งสองโลก

เราจะได้รับประสิทธิภาพที่ดีที่สุดของทั้งสองโลก ด้วยการรวม AI กับการประมวลผลคลาวด์แบบไร้เซิร์ฟเวอร์ และนั่นคือเหตุผลที่อาลีบาบา คลาวด์ ใช้สร้างผลิตภัณฑ์ฐานข้อมูลแบบไร้เซิร์ฟเวอร์ที่ขับเคลื่อนด้วย AI ซึ่งลูกค้าจ่ายเท่าจำนวนทรัพยากรที่ต้องการเท่านั้น และ AI ก็พร้อมให้คำแนะนำและเพิ่มความสามารถในการตัดสินใจในการจัดการความต้องการที่เกิดขึ้นกระทันหันหรือเวิร์กโหลดที่ไดนามิกมาก ๆ

วิธีการที่ใช้ AI ทำงานให้ โดยการทำงานกับฐานข้อมูลที่เหมาะสมอย่างไรนั้น เป็นตัวกำหนดว่าองค์กรจะขับเคลื่อนเทรนด์ด้าน AI สู่ความสำเร็จหรือถูกทิ้งไว้ข้างหลัง

 


ข่าวo:member+o:locวันนี้

IROYAL จับมือพันธมิตร EEST Energy Services รุกอุตสาหกรรมสำรวจและผลิตปิโตรเลียม

บริษัท อินเตอร์รอแยล เอ็นจิเนียริ่ง จำกัด (มหาชน) หรือ IROYAL เดินหน้าตามโรดแมพขยายฐานกลุ่มธุรกิจใหม่ บุกตลาดอุตสาหกรรมสำรวจปิโตรเลียม ด้วยการจับมือพันธมิตร บริษัท อีสต์ เอ็นเนอร์ยี่ เซอร์วิสเซส (ไทยแลนด์) จำกัด หรือ EEST ENERGY ผู้นำด้านการ ให้บริการโซลูชันอุตสาหกรรมน้ำมันและก๊าซธรรมชาติ ร่วมลงนามบันทึกข้อตกลงความร่วมมือ ชูวิสัยทัศน์มุ่งเน้น ESG ธุรกิจทางด้านการเปลี่ยนผ่านสู่พลังงานสะอาด การสนับสนุนการควบคุม มลพิษในระบบท่อก๊าซธรรมชาติ รวมถึงนำเสนอนวัตกรรมสำหรับให้บริการตรวจสอบและซ่อมบำรุง

ด้วยความเชื่อที่ว่าทุกคนสามารถสร้างความเป... สมาคมสตรีอเมริกันแห่งประเทศไทยมอบทุน 1,800,000 บาทให้นักเรียนหญิง ม.ปลาย 300 คน — ด้วยความเชื่อที่ว่าทุกคนสามารถสร้างความเปลี่ยนแปลงให้สังคมในท้องถิ่นได้ ...

เอ็นแอล ดีเวลลอปเมนต์ (NL) ประกาศข่าวดีคว... NL คว้า 2 งานโครงการใหม่ มูลค่ารวมกว่า 110 ลบ. รุกโปรเจกต์สถานพยาบาลเต็มสูบ — เอ็นแอล ดีเวลลอปเมนต์ (NL) ประกาศข่าวดีคว้างาน 2 โครงการใหม่จากสภากาชาดไทย แ...