ข่าวประชาสัมพันธ์ Press Releases ข่าวย้อนหลัง หัวข้อข่าว บลอก

การ์ทเนอร์คาดการณ์อนาคตของเทคโนโลยี AI

ข่าวประชาสัมพันธ์ไอที อินเทอร์เน็ท วันพุธที่ ๑๒ กุมภาพันธ์ พ.ศ. ๒๕๖๓ ๑๕:๕๓ น.
ขนาดตัวอักษร: ใหญ่ กลาง เล็ก
กรุงเทพฯ--12 ก.พ.--พีซี แอนด์ แอสโซซิเอทส์ คอนซัลติ้ง

ผู้บริหารที่ดูแลด้านโครงสร้างพื้นฐานและปฏิบัติการ (I&O) ขององค์กร ต้องใช้ประโยชน์จากเทคโนโลยีปัญญาประดิษฐ์ (AI) ในเชิงกลยุทธ์เพื่อเป็นตัวเร่งในการริเริ่มสร้างสรรค์ธุรกิจดิจิทัลใหม่ ๆ

จากรายงานการสำรวจ Gartner 2020 CIO Agenda Survey ถึงความต้องการของผู้บริหารระดับสูงด้านเทคโนโลยีสารสนเทศ (Chief Information Officer หรือ CIO) ประจำปี 2563 พบว่าองค์กรธุรกิจชั้นนำต่างคาดว่าจำนวนโครงการด้าน AI จะเพิ่มขึ้นเป็นสองเท่าภายในปีหน้า และกว่า 40% วางแผนจะนำโซลูชั่น AI มาปรับใช้อย่างจริงจังภายในสิ้นปี 2563 นี้ ทว่าความเป็นจริงแล้วองค์กรธุรกิจส่วนใหญ่ยังต้องเผชิญหน้ากับความท้าทายในการนำ AI มาปรับใช้ในองค์กรอยู่ ทำให้การดึงศักยภาพที่แท้จริงของเทคโนโลยี AI มาสร้างมูลค่าให้กับธุรกิจยังอยู่ในวงจำกัด

"การเปิดทดลองใช้งาน AI นั้นดูเหมือนเรื่องง่าย แต่การใช้งานให้เกิดประสิทธิภาพจริงนั้นกลับเป็นเรื่องที่ท้าทายอย่างมาก"

"แม้ว่าโอกาสประสบความสำเร็จจากการนำ AI มาปรับใช้ในธุรกิจนั้นมีมากมายมหาศาล แต่กว่าจะออกดอกออกผลนั้นใช้เวลานานกว่าที่คาดการณ์ไว้มาก" ชิรัค เดเคด ผู้อำนวยการอาวุโสฝ่ายวิเคราะห์ข้อมูลของการ์ทเนอร์กล่าวว่า "ผู้นำด้านไอทีที่รับผิดชอบเกี่ยวกับเทคโนโลยี AI จะพบ 'ความย้อนแย้งในการเริ่มนำ AI มาใช้ในองค์กร หรือที่เรียกว่า AI pilot paradox' เพราะในช่วงทดลองใช้ AI นั้นดูเหมือนง่าย แต่พอนำไปใช้จริงนั้นกลับเป็นเรื่องท้าทายอย่างมาก"

ผู้นำไอทีที่รับผิดชอบเรื่อง AI ต้องคอยช่วยพัฒนากลยุทธ์ด้านโครงสร้างพื้นฐานควบคู่ไปด้วย เพื่อช่วยให้เกิดความก้าวหน้าในการใช้ AI สามารถยืดหยุ่นได้ตามความต้องการ และที่สำคัญคือต้องตระหนักถึงคุณค่าของการนำ AI มาใช้ การ์ทเนอร์ได้คาดการณ์อนาคตของเทคโนโลยี AI ไว้ 5 ประการ แสดงให้เห็นถึงแนวโน้มการเติบโตอย่างรวดเร็วของการใช้เครื่องมือและเทคนิคต่าง ๆ ของ AI และความสำเร็จในการผลิตต้นแบบ AI ที่ผู้บริหารไอทีควรพิจารณามีดังต่อไปนี้

AI จะเป็นตัวแปรสำคัญของการตัดสินใจด้านโครงสร้างพื้นฐาน

AI จะยังเป็นเทคโนโลยีที่มีบทบาทสำคัญต่อการตัดสินใจด้านการวางโครงสร้างพื้นฐานและขับเคลื่อนงานในองค์กรต่อเนื่องไปจนถึงปี 2566 การนำเทคโนโลยี AI มาปรับใช้เพื่อเร่งกระบวนการผลิตจำเป็นต้องใช้ทรัพยากรด้านโครงสร้างพื้นฐานที่เฉพาะเจาะจง โดยต้องสามารถเติบโตและพัฒนาควบคู่ไปกับเทคโนโลยีได้พร้อม ๆ กัน รูปแบบของการนำ AI มาใช้นั้น จะต้องได้รับการปรับแต่งโดยทีมงานไอทีขององค์กรเป็นระยะ เพื่อให้แน่ใจว่าจะมีโอกาสประสบความสำเร็จระดับสูง ซึ่งอาจรวมถึงงานด้านการออกแบบหรือดำเนินการเกี่ยวกับข้อมูลมาตรฐาน หรือการผสานรูปแบบการทำงานของระบบ Machine Learning (ML) เข้ากับแหล่งข้อมูลสตรีมมิ่งเพื่อการคาดการณ์แบบเรียลไทม์

การจัดการความซับซ้อนที่เพิ่มขึ้นของเทคนิคการปรับใช้ AI ผ่านการทำงานร่วมกัน

หนึ่งในความท้าทายลำดับต้น ๆ ของการนำเทคนิคในเทคโนโลยี AI เช่น ML หรือ Deep Neural Network (DNN) มาปรับใช้ท่ามกลางสภาพแวดล้อมของ edge และ IoT (Internet of Things) มีความซับซ้อนของข้อมูลและการวิเคราะห์อยู่มากมาย ซึ่งการที่องค์กรจะประสบความสำเร็จในสภาพแวดล้อมดังกล่าวได้นั้น จะต้องมีการร่วมมือกันอย่างใกล้ชิดของทั้งฝ่ายธุรกิจและฝ่ายไอที โดยต้องวางแผนและให้บริการโซลูชั่นเชิงรุกเมื่อมีความต้องการสร้างธุรกิจใหม่ ๆ ให้เกิดขึ้น หรือที่การ์ทเนอร์เรียกว่า Infrastructure-led Disruption (การปฏิรูปด้านโครงสร้างพื้นฐานที่นำมาสู่การเปลี่ยนแปลงทางเทคโนโลยี)

บางครั้งที่เทคนิค ML แบบธรรมดา ๆ ก็มอบผลลัพธ์ที่ดีที่สุด

องค์กรธุรกิจมากกว่า 75% จะใช้ DNNs กับการใช้งานที่สามารถใช้เทคนิค ML แบบดั้งเดิมได้ไปจนถึงปี 2566 ผู้ที่นำ AI มาปรับใช้ในธุรกิจรายแรก ๆ และประสบความสำเร็จนั้น ล้วนเกิดจากการใช้ประโยชน์จากโซลูชั่น ML ในทางปฏิบัติเพื่อนำเสนอคุณค่าทางธุรกิจ โปรเจกต์ช่วงแรก ๆ กลุ่มนี้ใช้การเรียนรู้ด้วย ML แบบดั้งเดิม แต่เมื่อองค์กรธุรกิจมีการพัฒนามากขึ้น พวกเขาก็มีการใช้เทคนิคขั้นสูงกว่าด้วยการเรียนรู้อย่างถ่องแท้ในการใช้ประโยชน์จาก AI ให้ได้มากขึ้น หากจะต้องเลือก ท่านจะต้องกลั่นกรองพิจารณาด้านการโฆษณาเกินจริงในความสามารถของ AI และเข้าใจเรื่องต่าง ๆ อย่างละเอียดเพื่อจะได้จัดการปัญหาทางธุรกิจได้อย่างเหมาะสม เลือกสิ่งเรียบง่าย จะดีกว่าเลือกสิ่งที่คนนิยมกันแต่ใช้ยาก

ทำให้ผู้ให้บริการระบบคลาวด์กลายเป็นส่วนหนึ่งในกลยุทธ์ของคุณ

การใช้เทคโนโลยีคลาวด์เชิงกลยุทธ์ เช่น Cognitive Application Programming Interface (หรือ Cognitive API) เพื่อวิเคราะห์ข้อมูล, หรือเทคนิคการจัดการแพ็กเกจซอฟต์แวร์หรือ คอนเทนเนอร์และการประมวลผลแบบไร้เซิร์ฟเวอร์ จะสามารถช่วยลดความซับซ้อนของกระบวนการปรับใช้ AI ได้ โดยภายในปี 2566 จำนวน cloud-based AI จะเพิ่มขึ้นอีกถึง 5 เท่าจากตัวเลขในปี 2562 และ AI จะกลายเป็นหนึ่งในบริการคลาวด์ชั้นนำ คอนเทนเนอร์และการประมวลผลแบบไม่พึ่งพาเซิร์ฟเวอร์จะช่วยให้รูปแบบของระบบ ML ทำหน้าที่อย่างเป็นอิสระ ซึ่งสามารถช่วยลดต้นทุนและค่าใช้จ่ายขององค์กรได้อย่างมีประสิทธิภาพ

สำหรับรูปแบบการสร้างโปรแกรมแบบไม่พึ่งพาเซิร์ฟเวอร์นั้นถือว่ามีความน่าสนใจเป็นพิเศษในสภาพแวดล้อมของพับลิคคลาวด์ เพราะสามารถปรับขยายตามความต้องการได้อย่างรวดเร็ว แต่ผู้บริหารฝ่ายไอทีต้องตรวจสอบด้วยว่า ML ที่มีอยู่สามารถใช้ประโยชน์จากการประมวลผลแบบใหม่เหล่านี้ได้

การใช้ระบบ AI augmented automation อย่างเต็มที่ เต็มความสามารถ

เนื่องจากปริมาณข้อมูลที่องค์กรธุรกิจจะต้องจัดการเพิ่มสูงขึ้น ดังนั้น การแจ้งเตือนเมื่อระบบเกิดความผิดพลาดและการขาดประสิทธิภาพในการจัดลำดับความสำคัญของปัญหาก็จะมากตามไปด้วย ดังนั้น จึงเป็นเรื่องปกติที่เมื่อพูดถึง AI ฝ่ายไอทีและฝ่ายธุรกิจมักจะพูดกันคนละภาษา

การผนวกระบบ AI augmented automation เข้ามาในการทำงาน จะช่วยให้ทีมไอทีสามารถเรียนรู้ทักษะของ AI และรู้ตำแหน่งในการทำงานได้ถูกต้อง ทำให้สามารถทำงานร่วมกับหน่วยงานอื่น ๆ ที่เกี่ยวข้องได้อย่างมีประสิทธิภาพมากยิ่งขึ้น ภายในปี 2566 ทีมงาน I&O ในองค์กรธุรกิจขนาดใหญ่ประมาณ 40% จะใช้ระบบ AI-augmented automation มากขึ้น ซึ่งจะเพิ่มประสิทธิภาพด้านไอทีเนื่องจากมีความคล่องตัวและความยืดหยุ่นมากขึ้น

เกี่ยวกับการ์ทเนอร์

บริษัท การ์ทเนอร์ (Gartner, Inc.) (NYSE: IT) คือบริษัทวิจัยและให้คำปรึกษาชั้นนำของโลก และมีรายชื่ออยู่ในดัชนี S&P 500 บริษัทฯ ให้ข้อมูลเชิงลึก คำแนะนำ และเครื่องมือต่าง ๆ แก่ผู้บริหารองค์กรธุรกิจ เพื่อรองรับการดำเนินภารกิจสำคัญที่มีอยู่ในปัจจุบันและสร้างองค์กรให้ประสบความสำเร็จในอนาคต

การ์ทเนอร์นำเสนองานวิจัยที่ขับเคลื่อนด้วยข้อมูล ดำเนินการโดยผู้เชี่ยวชาญ และใช้แหล่งข้อมูลจากผู้ปฏิบัติงานจริง เพื่อชี้นำลูกค้าสำหรับการตัดสินใจที่ถูกต้องเหมาะสมในเรื่องที่สำคัญที่สุด การ์ทเนอร์ทำหน้าที่เป็นแหล่งข้อมูลที่เป็นกลางและเป็นที่ปรึกษาที่ได้รับความไว้วางใจจากองค์กรต่าง ๆ กว่า 15,000 แห่งในกว่า 100 ประเทศทั่วโลก ครอบคลุมทุกส่วนงานสำคัญ ๆ ในทุกกลุ่มอุตสาหกรรมและองค์กรทุกขนาด

ดูข้อมูลเพิ่มเติมเกี่ยวกับแนวทางของการ์ทเนอร์ในการช่วยให้ผู้บริหารตัดสินใจอย่างถูกต้องเพื่อขับเคลื่อนอนาคตของธุรกิจได้ที่ gartner.com


ขนาดตัวอักษร: ใหญ่ กลาง เล็ก

ข่าวประชาสัมพันธ์ที่เกี่ยวข้อง

แกรมมี่ผนึกกำลัง 5 กลุ่มพันธมิตรธุรกิจดิจิทัล ดันเพลงปี 50 เข้าสู่ยุคดิจิทัลเต็มตัว

นายสุวัฒน์ ดำรงชัยธรรม กรรมการผู้จัดการ บริษัทจีเอ็มเอ็ม ดิจิทัล โดเมน จำกัด หรือ GMMD ได้แถลงถึงทิศทางและภาพรวมปีนี้ว่า จะเป็นจุดเปลี่ยนของแกรมมี่สู่ยุคธุรกิจดิจิทัลอย่างแท้จริง ด้วยปัจจัยและกลยุทธ์สำคัญ 3 ประการคือ...

นิวรอล เทคโนโลยีส์ และเซเรบรัส โซลูชั่นส์ ผนึกกำลังเพื่อต่อสู้กับการฉ้อโกงในภาคโทรคมนาคม

บังกาลอร์, อินเดีย—(บิสิเนสไวร์)—5 ม.ค. 2548 นิวรอล เทคโนโลยีส์ ลิมิเต็ด (Nt3) และเซเรบรัส โซลูชั่นส์ ลิมิเต็ด (CSL) ประกาศว่าทั้ง 2 บริษัทได้ร่วมมือกันสร้างผู้นำตลาดบริการโซลูชั่นจัดการความน่าเชื่อถือ ความเสี่ยง และการฉ้อโกงโดยใช้เทคโนโลยีปัญญาประดิษฐ์ (...

ปฏิทินกิจกรรม : e-solution Fair 2003

e-solution Fair 2003 ห้องบอลรูม โรงแรม เลอ รอยัล เมอริเดียล ถนน เพลินจิต เวลา - 8.30 - 16.15 Background - โครงสร้างพื้นฐานของซอฟท์แวร์ที่ใช้ e-businessกำลังทวีความสำคัญมากขึ้นที่จะช่วยทำให้เป็นไปตามความต้องการทางธุรกิจในยุคของพาณิชย์อิเล็คทรอนิคแบบออนดีมา...

หัวข้อข่าวที่เกี่ยวข้อง

หัวข้อข่าวยอดนิยม

กรมสรรพากร ธนาคารกรุงเทพ ธนาคารกรุงไทย ธนาคารออมสิน ไปรษณีย์ไทย การบินไทย ธนาคารกสิกรไทย hotmai เพียวริคุ jobbkk ธนาคารไทยพาณิชย์ คาราบาว ดีแทค ไทยพาณิชย์ แจ่มใส เมเจอร์ ธนาคารอาคารสงเคราะห์ 12car กรุงไทย ธนาคารกรุงศรีอยุธยา กระทรวงสาธารณสุข การรถไฟแห่งประเทศไทย มิตซูบิชิ เมืองทอง ธนาคารทหารไทย ตลาดหลักทรัพย์แห่งประเทศไทย ซัมซุง มาม่า วันทูคอล ธนาคารแห่งประเทศไทย กระทรวงพาณิชย์ เวลาประเทศไทย ปตท ธอส บิ๊กซี กรมอุตุ กรมศุลกากร แม็คโคร ธนาคารกรุงศรี กระทรวงการคลัง